Μάθημα : 🧮

Κωδικός : 1901051403

1901051403  -  

Ενότητες - Α.2.2. Ισοδύναμα κλάσματα

Α.2.2. Ισοδύναμα κλάσματα



Ισοδύναμα Κλάσματα (Equivalent Fractions).

 

Απλοποίηση κλασμάτων. ( Simplifying Fractions)

 

Απλοποίηση και μετά Άθροισμα Κλασμάτων Simplifying The Fractions Before Adding Or Subtracting Them Is Very Smart

 

 

 

 

 

Ως το 7:30. Ισοδύναμα Κλάσματα (Μέρος 1). Θεωρία σε βίντεο.



Βρες ισοδύναμα κλάσματα και άλλαξε τον παρονομαστή (geogebra).  

 

Σταυρόλεξο στα κλάσματα.


Ερωτήσεις Σ-Λ στα ισοδύναμα κλάσματα.  

 

Τηλεπαιχνίδι με ισοδύναμα κλάσματα.  

 

Ισοδύναμα κλάσματα: αντιστοίχιση (θεωρία).  

 

 

 

 

 

 

Ενότητα Α.2.2.

 

Θέματα Τεστ Α.2.2. (Σαν την άσκηση 6 σελίδα 40) 

 

 

Α.2.2. Ισοδύναμα κλάσματα ΘΕΜΑΤΑ Α1

 

Α.2.2. Ισοδύναμα κλάσματα ΑΠΑΝΤΗΣΕΙΣ Α1

 

 

 

 

Ratio Stadium, Fraction Games, Ratio equivalency NUMBER OF PLAYERS: 4


Βρείτε τον άγνωστο. Ίσα χιαστί γινόμενα. NUMBER OF PLAYERS: 4

 

 Game 1 Game 2. Level 5. Relaxed mode. Slow.

 

 

 

 

Simplifying Fractions Rap Typography (Math)

 

 

 

Playlist: Μετατροπές.

 

Playlist προαιρετική: Διαιρέσεις και με αρνητικούς αριθμούς.

 

Playlist προαιρετική: Απλοποίηση.

 

Σε αρκετές χώρες (και στα βίντεο στις playlists) όταν γράφουν δεκαδικούς αριθμούς χρησιμοποιούν αντί για κόμμα τελεία και αντίστροφα π.χ.

1,000 χίλια ,

1.3 ένα τελεία τρία

ενώ στην Ελλάδα γράφουμε

1.000 χίλια

1,3 ένα κόμμα τρία.

 

 

 

Θεωρία:              σελίδες 38,39

Εφαρμογές: 1, 2, 3          σελίδα 39

Ασκήσεις από το σχολικό βιβλίο: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10    σελίδα 40

 

(σελίδα 59) Μαθηματικά Α΄ Γυμνασίου Λύσεις Σχολικού Βιβλίου

 

Ανάγωγο κλάσμα λέγεται ένα κλάσμα που δεν μπορεί να απλοποιηθεί.

Ανάγωγο κλάσμα λέγεται ένα κλάσμα α/β όταν ισχύει ΜΚΔ (α, β) = 1.

Ανάγωγο κλάσμα λέγεται ένα κλάσμα α/β όταν ο μοναδικός κοινός διαιρέτης του α και του β είναι το 1.

Ανάγωγο κλάσμα λέγεται ένα κλάσμα α/β όταν οι όροι του α και β είναι αριθμοί πρώτοι μεταξύ τους.

 

Για να μετατρέψουμε ένα κλάσμα α/β σε ανάγωγο διαιρούμε

και τον αριθμητή του α και τον παρονομαστή του β

με τον μέγιστο κοινό διαιρέτη τους ΜΚΔ(α, β).

 

 

 

Πώς απλοποιώ

το κλάσμα 12/18

όσο γίνεται;

Διαιρώ αριθμητή και παρονομαστή

με το ΜΚΔ τους.

ΜΚΔ(12,18)=6

12/6=2

18/6=3

Άρα

12/18=
2/3

(Το 2/3 είναι ανάγωγο)

 

 

 

Start. Αν 3/χ=6/10 τότε χ= (Σαν την άσκηση 6 σελίδα 40)

 

 

Στο κάτω μέρος της σελίδας πατήστε Question 1. Θα βρείτε 10 ερωτήσεις πολλαπλής επιλογής.

 

Στο κάτω μέρος της σελίδας πατήστε Question 1. Θα βρείτε 10 ερωτήσεις πολλαπλής επιλογής.



4 ερωτήσεις.

 



 

Βρες το ΕΚΠ των παρονομαστών και γράψε τα κλάσματα ως ομώνυμα.

 

 

 

Απλοποίηση σε ανάγωγο κλάσμα. Simplest Form Song: Simplifying Fractions by NUMBEROCK

 

 

 

denominator    παρονομαστής

equivalent  ισοδύναμα 

fraction  κλάσμα 

numerator   αριθμητής

 

 

Pre-Algebra 16 - Reducing Fractions

 

 

 

Απορία

40/60=16/χ  

α΄ τρόπος    

Αρχικά απλοποιώ

το 40/60

όσο γίνεται.

Διαιρώ αριθμητή και παρονομαστή

με το ΜΚΔ τους.

ΜΚΔ(40,60) = 20

40/20 = 2 , 60/20 = 3.

Άρα

40/60 =

(40:20) / (60:20) =

2/3

Μετά σκέφτομαι

με ποιον  τρόπο μπορεί

από 2 που είναι ο αριθμητής (του 2/3 )

να γίνει 16.

Αρκεί να πολλαπλασιάσω το 2 με το 8

για να γίνει 16.

Όμως αν πολλαπλασιάσω με το 8

τον αριθμητή ενός κλάσματος,

πρέπει να πολλαπλασιάσω με το 8

και τον παρονομαστή του κλάσματος.

Άρα στο 2/3 κάνω επί 8

και τον αριθμητή

και τον παρονομαστή

και γίνεται 16/24. 

Άρα 24 ο παρονομαστής.

χ=24



Απορία

40/60=16/χ 

β΄ τρόπος   (χιαστί με το μυαλό)

60 επί 16 = 960

 

40 επί πόσο κάνει 960;

 

κάνω 960 δια 40    
960/40 = 24

Άρα 24 ο παρονομαστής.

χ=24



 

Απορία

40/60=16/χ 

γ΄ τρόπος   (χιαστί)

40/60=16/χ  

40χ=60·16              

Χιαστί 

40χ=960                  

Πράξεις

40χ/40=960/40      

Διαιρώ και τα 2 μέλη με τον συντελεστή του αγνώστου.

χ=24

 



Equivalent Fractions Song - Rock 2 the Core - K-5 Math

 

 

Απορία

χ/4=4/16

Κοιτάω τους δύο παρονομαστές

που είναι

4 στο πρώτο κλάσμα χ/4

και

16 στο δεύτερο κλάσμα 4/16

Σκέφτομαι με ποιον αριθμό 

πρέπει να διαιρέσω 

το 16 για να γίνει 4.

Με το 4 αφού 16:4 κάνει 4.

Ξαναπάω στην αρχική εξίσωση.

χ/4=4/16

Κοιτάω τους δύο αριθμητές.

Τώρα διαιρώ τον

δεύτερο αριθμητή με 4

για να βρω ποιο είναι το χ.

4:4=1

Άρα χ=1



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Καθήκοντα

1η ώρα 

Α.2.2. Ισοδύναμα κλάσματα ΘΕΜΑΤΑ Α1

 

Καθήκοντα

2η ώρα

 

 

Playlist: Ρητοί.

 

 

Καθήκοντα

3η ώρα 

Να μετατρέψετε σε ανάγωγο το κλάσμα 154/616



Να πολλαπλασιάσατε

και τα δύο μέλη 

της εξίσωσης χ/5=3/5

με το ΕΚΠ των παρονομαστών 

δηλαδή το 5

ώστε να κάνετε 

απαλοιφή παρονομαστών.

 

 

Να πολλαπλασιάσατε

και τα δύο μέλη 

της εξίσωσης 7/4=χ/6

με το ΕΚΠ των παρονομαστών 

δηλαδή το 12

ώστε να κάνετε 

απαλοιφή παρονομαστών.

 

 

Να διαιρέσετε

και τα δύο μέλη 

της εξίσωσης 30χ=5

με τον συντελεστή του αγνώστου 

δηλαδή το 30

ώστε να προκύψει η λύση της. 

 

 

Να απλοποιηθεί το κλάσμα 

με αριθμητή 7χψ και

παρονομαστή 14ψ.

 

 

 

 

Απλοποίηση για  1 / 25

 

 

 

Πάρα πολύ σημαντική μέθοδος:

ΑΝΑΓΩΓΗ ΣΤΗ ΜΟΝΑΔΑ

Όλοι πρέπει να την μάθουν.

Ένας στους 25 μαθητές μιας τάξης μπορεί άραγε να βρει την απάντηση με αναγωγή στη μονάδα;

Πρόβλημα

Ο  πληθυσμός  μιας πόλης αυξάνεται  κάθε  χρόνο  κατά 2%.

Αν   η   πόλη   αυτή   έχει   σήμερα   1.040.400   κατοίκους ,

ποιος   ήταν   ο   πληθυσμός   της   πριν   1   χρόνο;

Λύση Α' Γυμνασίου

Αν πούμε ότι

ο περσινός αριθμός κατοίκων

είναι το 100%,

τότε

ο φετινός αριθμός κατοίκων

είναι το 100% συν 2%.

Οπότε 1.040.400 είναι το 102%

Κάνω αναγωγή στη μονάδα.

Αν διαιρέσω το 1.040.400 με το 102

( 1.040.400/102 = 10.200 ) 

βρίσκω το 1%.

Εφόσον ψάχνω το 2%

πολλαπλασιάζω το 10.200 με το 2,

10.200 · 2= 20.400 

και το αφαιρώ από το 1.040.400.

 1.040.400 - 20.400 = 1.020.000 

Ο πληθυσμός της πόλης πριν από ένα χρόνο ήταν 1.020.200

Λύση Β' Γυμνασίου 

Αν ήταν Χ ο πληθυσμός.

Χ + 0,02•Χ =1.040.400

1•Χ + 0,02•Χ =1.040.400

(1+0,02)•Χ =1.040.400

1,02•Χ =1.040.400

(1,02•Χ)÷1,02 =1.040.400÷1,02

Χ=1.040.400÷1,02

Χ=1.020.000

Ο πληθυσμός της πόλης πριν ένα χρόνο ήταν 1.020.000.

Επαλήθευση:

1.020.000•(2%)=

1.020.000•0,02=

20.400

και

1.020.000+20.400=

1.040.400